A quest for simplicity

<

From depths of IS to heights of API

Arnaud Lauret
@apihandyman AXA Banque

One does not simply start a quest
without a goal

The events depicted in this talk are fictitious. Any similarity to any
information system living or dead is merely coincidental.

i - D
Programming?:)
: 4

- &
3 » -
W - -
~
s -
» L
. i
- .
‘\ . "' - " " -
a . 1 A
-)
2 h
‘) - - P
s
,.l

i S 0
Interface:)
Y

e IId@pendent.. .
unrelated systems....
Interact..oow

-

=

CO
@&

T
=t ECT sTAR

z = n £ e Lk 3
sy~ J<J-T-J-1-)

https://getpocket.co...

POST v

Body

Cookies

Pretty Raw Preview

1
2
3
4
5
6
7
8

9
10
11
12

177

v
- Ila
hd

https://getpocket.com/v3/send

Status 2000K Time 6689 ms

Headers(17) Tests(0/0)

JSON W ' = ‘

ction_results": [

{

"item_id": "806114722",

"normal_url": "http://apihandyman.io",
"resolved_id": "8@6114722",
"extended_item_id": "886114722",
"resolved_url": "http://apihandyman.io",
"domain_id": "22272648",
"origin_domain_id": "22272648",
"response_code": "200",

"mime_type": "text/htmlL",

Manamtranmt 1 anmatihl e A4 ATH

No environment v e

&

Q

What have they
In common?

APl = Ul

for people building programs

What's happening ' ‘
behind an

interface?

The microwave oven parable

» .V
" ®
»

Abstraction

What do we seek when using an interface
(especially an API) ?

Simplicity

INTE PROT MEMR INP Mt our HLTA STACK wo

STATUS

WAIT HLDA AlS Ala A3 Al2 Al

i
I
I
1

wen b+ o -Fagy to use

Py glb © <

- - -

SINGLE
2 sToP STEP EXAMINE oEPOL
i) \‘ & e S
EXAMINE DEPOS

r L ~ <
IN K NEXT NEX

Easy to understand

Missing
Error 1543 armai

UL)9;

THE
ULTIMATE
SOUND OF MOOG.

The sound of the Minimoog in a polyphonic programmable instrument.
The Memorymoog, from Moog.
3 oscillators per voice through the patented Moog filter, 75 programs with
10 program chains, programmable foot pedals, return-to-zero or unconditional
contours and extensive voice modulation options give the Memorymoog more sound
and musical expressiveness than any instrument of its kind.
Only Moog engineering could create this instrument; only Moog manufacturing could
produce it at such an affordable price.
The Memorymoog. From Moog.

The people who started it all. FTMIESIMOFrYmoogy

Moog Music Inc., 2500 Walden Avenue, Buffalo, NY 14225
Moog Music, Waalhaven Z.Z. 48, Rotterdam 3088 H.J., Holland - The Netherlands

Core Banking System

A long time ago..

) r...r\.ﬁ'«
'ﬁ,

Interactive Voice Response

ZBALO
y4=YA\AY)

CBS Non CBS
ZBALA Database Database
/BALY

MQ Message:
F1202167754151912540123777463779FRF0300020160917

Minitel

CBS Non CBS
Database Database

|s interfacing with GBS simple?

o [siteasy to use?
e [t it easy to understand?
e I[s the abstraction adapted to the audience?

EE

IN

INTE PROT MEMR INP Mt our HLTA STACK wo INT D7 D6 05 D4 D3 02 DI DO
STATUS
! | I L) ! : 1 |
. ! | ! | | | |
I t | 1 | | 1 !
WALT NLDA AlS Ala A3 A2 Al AlD AD A8 A7 A6 A5 Ad A3 A2 Al AC
] 1 L} 1 \ 1 1 I I I I I 1 I I !
1 1 | \ t 1 1 I | ! | | | | i
i 1 L} ! I | i 1 1 | 1 1 | | | |
1 1 v "p 9 I i O 1 [[t [i i 1 1
SENSE sw. S . : 0'2 I t S 0 S I m e 6 : 4 ‘ 3 I i
_\L _Q_l & z 5 L ks < o £+ £ L4 & < £
AUX
sSTOP sgerELPE EXAMINE DEPOSIT RESET PROTECT AUX
{ { { &
{ y { \ & \ S
b > = P TECT
AN EXAMINE DEPOSIT CLR UNPRO
NEXT NEXT

Web services

A few years laters..

At that time...

Non CBS
Database

SOA Principles

® Service
e [oose coupling
e Reusability

SOAP Protocol

e Use HTTP as a transport protocol

e XML based
e Input message contains the action to

trigger and the data

=i Service
7

SOA(P)

CBS Non CBS
Database Database

Several years later

SOA(P)

CBS Non CBS

Database Database

|s interfacing with SOA simple?

o [siteasy to use?
e [t it easy to understand?
e I[s the abstraction adapted to the audience?

ome...

APls

A few years ago ..

Middleware .

SOAP services

ROAST API recipe

1. Take a SOAP/XML web service name add a / before it

2. Choose randomly an HTTP method between GET, PUT,
POST, PATCH or DELETE, put it before the /

3. Transform input/output data from XML to JSON

4. If the method is GET or DELETE, put all parameters in
query variables

5. And be sure to always return HTTP status 200

The mobile team discoverin
GET /cancelTrfr?ztr1={id}

Several years later

Design First

Use resource instead of actions

A list of wire transfers

[transfers

A wire transfers

[transfers/{transferld}

Use relevant HTTP method

Create a transfer

POST /transfers

Delete a pending wire transfer

DELETE /transfers/{transferld}

Update a customer email

PATCH /customers/me

Update a customer phone number

PATCH /customers/me

Use relevant HTTP status

403 Not enough money

503 No transfer between 1 am and 2 am

Provide hypermedia controls

D |

THIS SIGN
THAT BRID

-

HIT

IF YOU
YOU WILL HIT

GET /accounts/C1

‘“balance’:
‘“actions”

“name’”: “transfer”

Different ways to fill the set of actions

#1
Takeshi’s Castle
Knock Knock

403 Forbidden
{
“code”: 1012 ‘
nimessage’! nlnsufﬂ ' aha
balance.” -

“code”: 1214,
“message’”: “No
transfer between 1am
and 2am.”

#2
This is bowling.
There are rules.

“balance’:
“actions”: | |

Bl
“balance”: 200_ ok
“actions’’: —

#3
The Dude abides.

“balance”: ,
‘“actions”

“status”: 403,
“error”: { “code”: 1012, ‘ ,
“message”: “Insufficient

balance.”}

“balance”: 20000,
‘“actions”

“status”: 503,
“error”: { “code”: 1214, ‘ _
“message”: “No trasfe
between 1am and 2am.”} o

It it really so simple to design an API?

|s interfacing with a RESTful API simple?

o [siteasy to use?
e [t it easy to understand?
e I[s the abstraction adapted to the audience?

e

Simple as a lego brick

The end?

To the heights of API and beyond...

